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The method of mergeable asymptotic expansions has recently been used effectively 
in investigations devoted to the study of boundary layer interaction with an ex- 
ternal inviscid flow at high subcritical Reynolds numbers Re. The asymptotic 
analysis permits obtaining a limit pattern of the flow around a solid as Re § ~, 
and determining the similarity and quantitative regularity laws which are in 
good agreement with experimental results. Thus by using the method of mergea- 
ble asymptotic expansions it is shown in [1-4] that near sites with high local 
curvature of the body contour and flow separation and attachment points, an in- 
teraction domain appears that has a small length on the order of Re -3/8. In this 
flow domain, which has a three-layer structure, the pressure distribution in a 
first approximation already depends on the change in boundary-layer displacement 
thickness, while the induced pressure gradient, in turn, influences the flow in 
the boundary layer. An analogous situation occurs in the neighborhood of the 
trailing edge of a flat plate where an interaction domain also appears [5, 6]. 
The flow in the neighborhood of the trailing edge of a flat plate around which a 
supersonic viscous gas flows was examined in [7]. Numerical results in this paper 
show that the friction stress on the plate surface remains positive everywhere in 
the interaction domain, and grows on approaching the trailing edge. The superson- 
ic flow around the trailing edge of a flat plate at a small angle of attack was 
investigated in [8, 9]. Supersonic flow of a viscous gas in the neighborhood of 
the trailing edge of a flat plate at zero angle of attack is examined in [I0], but 
with different velocity values in the inviscid part of the flow on the upper and 
lower sides of the plate. The more general problem of the flow around the trail- 
ing edge of a profile with small relative thickness is investigated in this paper. 

Let us consider the flow around a thin profile at a small angle of attack by a uniform 
supersonic viscous gas stream as the characteristic Reynolds number tends to infinity (Re = 
9~I/~L~ = 8-2, �9 where 9~, u~, ~ are the density, velocity, and dynamic viscosity coef- 
ficient of the incoming stream, and I is the profile chord length). Henceforth, only dimen- 
less quantities are used, whereupon all the linear dimensions are referred to 2, the veloci- 

2 ties to u~, the densities to p~, the pressure to p~u~, the enthalpy to u 2 , and the dynamic 
viscosity coefficient to B~. We shall use a Cartesian Xo, Yo coordinate system with OXo axis 
along the incoming flow velocity direction and origin at the profile trailing edge for the 
description of the flow around the profile. Let the slopes of the profile surface to the in- 
coming stream direction be of the order ~<<I. The equation of the profile surface is writ- 
ten in the Cartesian coordinates in the form 

Yo = ~f  ~,~(Xo) ~ --i <<. Xo ~ O, 

where FI(Xo) and F2(Xo) are the shapes of the upper and lower profile surfaces, respectively, 
and T is a small parameter characterizing the relative profile thickness and is independent 
of the Reynolds number. Then the flow around the profile will be described by'the linear 
theory of supersonic flows that yields the following expressions for the pressure and the 
longitudinal velocity component on the upper and lower profile surfaces: 

t �9 dF1,2 ~ dF1, 2 

P = +-  - -  1 d X o '  = 1 - -   Xo' ( 1 )  

where y is the ratio of the specific heats, and M= is the free stream Mach number. 

Zhukovskii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
pp. 36-42, May-June, 1981. Original article submitted April I0, 1980. 
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We make the following additional assumptions relative to the profile shape. Let the 
profile surface shape be such that in a certain neighborhood of the profile trailing edge 
with Xo ~ e~/4, the slopes of its upper and lower surfaces are of the order i/2 = Re-lifo 
Since the parameter T is independent of Re, and therefore cannot tend to zero as Re + ~, the 
profile shape should be selected so that, firstly, a smooth passage from slopes on the order 
of T on the main part of the surface with Xo ~ 1 to angles near the trailing edge, on the 
order of ~i/'2, should be assured, and secondly, separation-free flow around the profile sur- 
face should be realized up to at least the neighborhood of its trailing edge with Xo ~ 3/,. 

Under the assumptions made relative to the slopes of the profile contour in the neigh- 
borhood of the trailing edge, the shape of the profile surface should satisfy the condition 
dFx,z/dXo = 0 for Xo = 0. The zero streamline coincides with the profile surface for 
_i~Xo~O , where the condition of impermeability of the contour is imposed. In order 
to assure compliance with the adhesion condition, a boundary layer must be introduced on the 
upper and lower sides of the profile. The flow in the boundary layer is described by the 
usual equations for a compressible boundary layer with pressure and external velocity distri- 
butions governed by (i), and a given temperature surface. By integrating these equations 
velocity and enthalpy profiles, friction stress and heat flux distributions over the profile 
surface, and, inparticular, the friction stress on the upper and lower sides of the profile 
trailing edge can be obtained. In contrast to the case investigated in [8, 9] of the super- 
sonic flow around a flat plate at an angle of attack, these friction stresses can differ in 
magnitude from each other. However, the different friction stresses on the trailing edge do 
not appear in this case because the inviscid flow on the upper and lower sides has different 
values of the velocity (see [i0]), but because the velocity distribution on the outer bound- 
ary-layer boundary, and the pressure gradient at different sides of the profile, may differ 
substantially from each other. In this case a boundary-layer interaction domain with the 
outer inviscid supersonic flow [4] is realized in the neighborhood of the profile trailing 
edge in this case. It is convenient to use an orthogonal (x, y) coordinate system coupled 
to the zero streamline and with origin at the profile trailing edge to describe the flow in 
this domain. As in [1-4, 8-10], the interaction domain is divided into domains with differ- 
ent coordinate scales and flow functions: Domain 1 corresponds to the perturbed inviscid 
supersonic flow zone (x ~ y ~ c3/~), domain 2 is the main part of the boundary layer (y ~ s), 
and domain 3 is the viscous sublayer in which the velocity perturbation is of the order of 
the velocity itself (y ~ es/~). By using the stream function $, the asymptotic expansions 
of the coordinates and the stream function in domain 1 can be represented in the form 

• 8 i /2~  Cx X = s  1, ~ = s 3 / 4 ~ 1 '  P = ? M ~  ~ F l ~  1, ~1)'+" . . . .  

112  , 
p = i + 8~/~ (z~, ~1) + . . . .  u = 1 + e~/2u~ ( x .  %) + . . . .  v = e h t z .  % ) ,  

h= 
(~ - I) ML 

+ ei /2hi  (xl ,  %) + �9 . . ,  

As in the case of the flow around a point of separation [1-4], or the flow around a 
plate trailing edge [7-10], the flow in domain 1 is described in a first approximation by 
linear supersonic flow theory. By using this theory, a relation can be obtained between the 
pressure perturbation and the vertical velocity component upward and downward from the zero 
streamline ~) = 0, whose Cartesian coordinate we denote by Yo*: 

y ML - -  1 Pi  (xi ,  ~ i  --*- 4- O) --- -4- ~ ___ v 1 (zi ,  ~'i - *  ----- 0). 

The asymptotic expansions take the following form in domain 2: 

t + ,o 2 ~ x ~ , % ) +  . . . .  o 81/'2 " X = e3/4x~, 't~ : 8~2 , p ~iM~ 

P = 020 (~2) -+- 81'2p2(x2, ~2) + . . . .  U = U~o(~2) -~- e~/2U2(X,, , ~2) + . . . .  

v = ei:2vo_(x2, ~ )  + . . . .  h = ho.o(%) § ~l/2h2(x~,  r + . . . .  

U = ~Y~o(*~) + ~5/~U~(xo_, *o3 + � 9  
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The first terms in the expansions u20(,~) , P20(~2), h=0(*2), Yeo(*2) are determined for $~ > 0 by 
merger with the solution of the boundary layer equations before the interaction domain on 
the upper side of the profile trailing edge, and for ~ < 0 by merger with the solution ob- 
tained for the boundary layer on the lower side of the profile. The flow in domain 2 turns 
out to be inviscid [1-4] and, ina first approximation, does not influence the pressure dis- 
tribution in the interaction domain. The absence of a transverse pressure drop in do- 
main 2 permits utilization of the pressure distribution found in domain i to compute the flow 
in the viscous near-wall layer (see [1-4]). The asymptotic representations and equations 
that describe the flow in domain 3 have the form 

__ 88/~ t + 81/~Ps (Xs, ~3) + . . . .  P = Pw + eZ/4ps (x~, *a), (2) X =  e3/~X s, * - -  v 3 .  P =  yM'---~'~ 

U = el/4Us(Xs. ~8) + �9 �9 ". V = es/4Vs(X~. ~8) + . . . .  h = hw + e z [ ~ s @ s .  ~). 

= ~ + . . . .  Y = es/4Ys(xs.  ~s)  + �9 �9 .; 

OUs , OP s 0 ( 0~-~'~I #Ps =0. Oy~ v:, (3) 

Equations (3) show that the flow in the viscous sublayer is described by the usual incom- 
pressible boundary-layer equations. However, the pressure gradient is not given here but 
should be determined during the solution by merging with the domain i since there is no 
transverse pressure drop in domain 2. The boundary layer on the upper and lower profile sur- 
faces can, as has been noted above, have different friction stresses on the wall (~ = • 
ahead of the interaction domain. Consequently, by using dimensionless friction stresses in 
the unperturbed boundary layer on the upper and lower sides of the profile al = ~u2o/3y2o 
(~2 = +0), a2 : ~u2o/~y2o (~ = --0), in front of the interaction domain, boundary condi- 
tions can be obtained for the longitudinal velocity component in the viscous sublayer in the 
form 

ua-+ w|/2a1*---~Pw ~ % - + +  ~o, us-+__pT|~2%% as , s - + .  oo. 

Merging t h e  v e r t i c a l  c o o r d i n a t e s  in  domains 2 and 3, as  i s  done in  [4 ] ,  y i e l d s  t he  f o l l o w i n g  
e x p r e s s i o n s  f o r  t h e  f u n c t i o n s  y a z ( x 2 ,  +0)" 

Y,z(x,, + 0 ) = ,  - -  V p - - ~ z ) .  y,z(x,. --  O) = *s~-'\lim -- Pwu,"+ V ~ ] "  

This last merger of the vertical velocities and coordinates in domains 2 and I permits 
finding the pressure in the interaction domain, which defines the boundary value problem for 
domain 3 completelyt 

(x., + o /= Yo + o) + 

- o ) =  r; -o) + M~--I  
[ 

lira /~ d'a-- 

Let us note that xa>0 p3(xs, q-0)=pa(xa,--0) and Y~(xa, q-0)----Y~ (xa, --0) for x3 > 0 while the 
Cartesian coordinate of the zero streamline agrees with the upper and lower profile surfaces, 
respectively, and pa(xa, +0)=Y=pa(xa, --0) for xa < 0. It is convenient to use the boundary 
layer equations (3) in the (xa, Ya) variables and the following change of variables and flow 
functions: 
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3 3 ~,, = ( , ~ / ~ , ~  (ML - i ) ~ )  ~/' u, ~ (.oa, (ML-- 1) '/~ p ~ ) "  V, 
5 2 _____ - -  x~ = (.~a.,~ (ML-- 0~/') -'/' x,  v~ (.~/,~,~ (ML 0"~) ~/' Y, 

* 3 3 Y o  ]93----- (~t~al/(M~ -- t)1/~) x/s P, Yo = (l~Jalp~o ( M ~ -  i)x/s) x/' 

(4) 

to investigate the flow in domain 3. Assuming the profile shape in the neighborhood of the 
trailing edge to be a wedge with apex half-angle 8 at the angle of attack a to the free 
stream direction, we obtain the following boundary value problem for a viscous sublayer: 

OU OU dP 02U OU OV r y :> a~,, 
Ug-2+V~=--T2+oyV o x + ~  =0'  P=tPf,  Y<O, 

OU OU ---*I as Y - + +  co, ~-~--+--A as Y - , - - - o o ,  oY 

(5) 

U---- Y + I Y I  Y - - I Y I A ,  pv..-->--0--~z, P f - ~ - - 0 + c z  as X-+- -oo ,  
2 2 

dA:t dA Pf------0+0~+~-- as X~.~0, U = V = 0  as Y=0, Pv=--0--cz+T~, 

dYo dA dY0 dhl 
V = 0 a s  Y = 0 ,  P v = ~ - - + ~ ,  P f = - - ~ - + 7 ~ - - '  Pv----Pf as X > 0 ,  

P - + 0  as X. -++co ,  A =  lim ( Y - - U ) ,  Az= lim ( - - Y - - U ) ,  
y-,+~ Y-~- -~  \ 

where A = a:~/a~. 

The boundary value problem formulated here for 0 = 0 and A = i goes over into a problem 
examined in detail in [8]. The condition 0 = 0 means that the profile has a zero streamline 
in the neighborhood of the trailing edge, or the profile thickness is less in order of mag- 
nitude than E 5/~. The parameter A becomes one when the friction stresses are equal on the 
upper and lower sides of the profile trailing edge. This is possible both in the case of 
a flat plate [8], and in the flow around a symmetric profile at zero angle of attack 
(FI(Xo) ~ F:z(Xo)). In contrast to [i0], utilization of the similarity transform (4) permit- 
ted elimination of the free-stream Mach number frem the formulation of the boundary value 
problem (5). In fact, as is shown in [i0], not only the ratio of the friction stresses in 
the unperturbed boundary layer, but also the free stream Mach number enters as one of the 
boundary conditions in the formulation of the problem for the viscous sublayer in supersonic 
flow over the trailing edge of a flat plate with different velocities on its opposite sides. 

Let us examine the asymptotic behavior of the solution of the boundary value problem 
(5) obtained for large values of X. By using the continuity equation we introduce the stream 
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function ~ and, following [8], assume that the solution can be sought as X -> + ~ in the form 

p = PoX-~/3 + . . . .  ~ = X~/a/oO]) + X ' / 3 h ( ~ )  4- . . . .  

where the self-similar variable is n = Y/X I/3. Then, we obtain an equation and boundary con- 
ditions for the first term of the stream-function expansion 

,, 2, ~_( ,, 
]o ~ -~ ]0 f0 - -  fo) e = O ,  ] o ( q - ~  ] 0 ( - - ~ 1 7 6  (6) 

In the case of supersonic flow around a flat plate at a small angle of attack, which was in- 
vestigated in [8], the boundary layer on the upper and lower sides of the plate trailing 
edge has identical friction stress. Hence, A = i, and the last boundary condition in (6) 
would become ]~(--oo) =--I. As has been shown in [5], this boundary condition can be re- 
placed by fo"(0) = 0, and the solution of (6) can be sought only for positive values of ~. 

It is found in [5] in solving this boundary value problem that 

]~(0)=l .61 ,  ]~-~=hq--3P0 as q-+=hoo,  P0=--0.297. 

In the nonsymmetric case that is examined in this paper (A~I), it is necessary to solve 
(6) for the whole range -~ < n < + =. The boundary conditions (6) permit indicating the 
behavior of fo'(~) for large values of the variable ~: 

where Sx and S2 a re  c o n s t a n t s  de termined from the  s o l u t i o n  of  the  boundary v a l u e  problem (6) .  

This a f f o r d s  the  p o s s i b i l i t y  of  f i n d i n g  the f i r s t  terms of  the  expans ions  fo r  the  p r e s -  
su re  and the  C a r t e s i a n  c o o r d i n a t e  of  the  s t r e a m l i n e  as X-+~-oo :  

P = Po X - s / 8  -k . . . .  ? o  = Co X1/8 -Jr" . . . .  Po = ~ - -  $1 - -  , Co = T $1 - -  . 

The boundary value problem (6) in which the single parameter A enters was solved numerically 
for the values 0~A~3.5. The behavior of the first derivative fo'(~) is displayed in Fig. 
1 for different values of A. The curves displaying the dependence of the velocity at the 
zero streamline and the constants $I and $2 on the magnitude of the parameter A are present- 
ed in Fig. 2. In particular, results are obtained for the case A = i, which are in good 
agreement with the data in [5]: 

]~(0)=1.610, S 1 = S ~ = 0 . 8 9 5 ,  P o = - - 0 . 2 9 8 ,  Co=O. 

In this case (A = i), the first term in the expansion for the Cartesian coordinate of the 
zero streamline is missing (Co = 0), and the expansion starts with the next term whose form 
is examined iD [8]. However, for A~I the Cartesian coordinate of the zero streamline be- 
haves as CoX ~/3 as X-+~-oo , where the quantity Co depends only on the parameter A. Curves 
displaying the dependence of the constants Po and Co in the first terms of the expansions for 
the pressure and the Cartesian coordinate of the zero streamline on A are represented in 
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Fig. 3o For A > 1 the constants Fo remain negative and increase slowly simultaneously with 
the growth of the parameter A. Thus for A increasing from 1 to 1.5, Po increases by only 5% 
and is practically invariant as A grows further. However, as A diminishes from 1 to 0, the 
absolute value of Po starts to grow. Thus, for A = 0.i, the quantity Po diminishes by more 
than twice as compared with its value for A = I. This results in slower damping of the pres- 
sure perturbation as X § + ~ and A < 1 whereupon the extent of the interaction domain down- 
stream from the profile trailing edge increases by comparison to the case A = i. Computa- 
tions also Showed that the constant Co characterizing the deviation of the zero streamline 
from the abscissa axis of the Cartesian (Xo, Yo) coordinate system varies considerably more 
rapidly for A< 1 than for A> i. Sucha difference in thebehavior of the quantitiesPo and Co for 
A< 1 andA >i is explained bythe following. Upon the insertion of new variables (4), the mag- 
nitude of the dimensionless friction stress on the upper side of the profile trailing edge 
a~ was used, and the magnitude a= here entered only into the parameter A = a2/a:. The length 
of the interaction domain is, as follows from (4), proportional to the dimensionless fric- 
tion stress to the power m = --5/4. The quantity Po and the interaction domain length are 
determined principally by the least dimensionless friction stress in the unperturbed bound- 
ary layer. Hence, in the variables in which the problem (5) is formulated, the constant Po 
and the extent of the interaction domain downstream of the profile trailing edge are prac- 
tically invariant as the parameter A increases for A = a=/a~ > 1 since they are defined by 
a quantity Whose influence has already been taken into account upon insertion of the varia- 
bles (4). For A < 1 downstream propagation of the perturbations and the flow in the wake de- 
pend principally on the magnitude of the friction stress a2, and the dependence on the pa- 
rameter A in the variables (4) becomes stronger. Let us note that for A = 0 boundary layer 
separation occurs on the lower side of the profile upstream of the interaction domain being 
formed at the profile trailing edge. In the neighborhood of the point of separation, an in- 
teraction domain here occurs that has been examined in detail in [1-4]. In this case the 
flow at the trailing edge can be reconstructed, and the asymptotic expansions and flow dia- 
grams proposed here can become incorrect. 
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